If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-4-12=0
We add all the numbers together, and all the variables
k^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| √5y2+3y+4=2y | | 4(2z-2)+1=7(z+4) | | b+50=31 | | 6=r(15-6r) | | x−8/x=63/x+8 | | x−8x=63x+8 | | -=g-9 | | 1/3b-(b+1/5)=1/15(b+1) | | 1t+T/9=4 | | M^2=16m-55 | | n^2-21n+80=0 | | .75y=800 | | 5u-8=-7(u-4) | | -25+2x=250-3x | | 5u-8=-7(u-) | | 2x2-4x=5 | | 10x-2/5=7 | | x+36=2x+4 | | 3w+5=20-2w | | 3x+12=-6x+9 | | 2/3x=+5=11 | | 9(3x-4=-10(x+11) | | t/6+3=13 | | 3m−13=24 | | 10+5w=1.25 | | 115-2.5x=95-2x=40 | | 3/2x+2/7=-2/7-10/28 | | 8x-6=5x-14 | | 7(3n+3)=9(8n+3)+9 | | 115-2.5x=95-2x=50 | | 8x+8=(x-6) | | 5-x^=-19 |